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The temporal evolution of baroclinic basin-scale waves in a rotating circular basin
following an initial forcing event is investigated using a laboratory study. Experiments
conducted in the circular domain containing a two-layer fluid with a flat bottom and
vertical sidewalls demonstrate that the response is essentially linear with frictional
effects at the boundaries steadily dissipating wave energy. Experiments conducted in
the same configuration but with the addition of simple topographic features, either a
radially protruding cape or a bathymetric ridge, exhibit wave/topography interactions
that result in the formation of an eddy field and an offshore flow, respectively. The
rate of wave decay, as well as the amount of horizontal mixing occurring within the
basin, is significantly enhanced by such interactions. The results of this study are then
considered in terms of their implications for the baroclinic basin-scale wave energy
pathways in large stratified lakes influenced by the Earth’s rotation.

1. Introduction
In stratified enclosed water bodies, a portion of the mechanical energy input from

wind forcing generates baroclinic basin-scale waves (e.g. Csanady 1967; Antenucci &
Imberger 2001; Stocker & Imberger 2003) that distribute energy throughout the
domain (Gill 1982). Internal waves may transfer energy within a lake from the
basin-scale to the smallest scales of motion (Saggio & Imberger 1998) and thus
have the potential to affect directly the distribution of sediments, nutrients, dissolved
oxygen and other biological agents within lakes (e.g. Imberger 1998). The current
study investigates the temporal evolution of baroclinic basin-scale waves and those
energy pathways within water bodies large enough to be influenced by the Earth’s
rotation.

The pioneering work on such lakes was performed by Lamb (1932) who discussed
free wavelike motions in a circular domain consisting of a flat bottom and vertical
sidewalls containing a single fluid layer. A subsequent study by Csanady (1967)
extended these results to a two-layer fluid, whereas Antenucci & Imberger (2001)
used an analytical model to investigate the ratio of kinetic to potential energy for
freely evolving baroclinic basin-scale waves. Stocker & Imberger (2003) provided an
analytical description of the linearized initial boundary-value problem for a surface
tilt in a circular lake and quantified the amount of energy contained in the wave
response due to the initial forcing. Nonlinear and frictional effects, neglected by such
linear inviscid analysis, are important in the field (e.g. Martinsen & Weber 1981;
Antenucci & Imberger 2001; Rueda, Schladow & Pálmarsson 2003) and are required
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to describe the temporal evolution of baroclinic basin-scale waves and, hence, the
associated energy pathways within such systems.

Within a circular domain, nonlinear effects may manifest themselves in three basic
ways. First, it has been demonstrated that the nonlinear steepening of a basin-scale
wave, owing to the initial forcing and ambient stratification, results in the transfer of
energy to solitary waves with a much shorter lengthscale in a non-rotating channel
(Horn, Imberger & Ivey 2001; Horn et al. 2002). Similarly, Melville, Tomasson &
Renouard (1989) have shown that, in a rotating system, nonlinear steepening of a
Kelvin wave leads to the transfer of energy to Poincaré modes of the channel. Secondly,
nonlinear interactions between the basin-scale modes may lead to the transfer of
energy to higher modes (Riley & Lelong 2000). This process has been described in
a rotating channel where nonlinear interactions between modes led to the growth of
a Poincaré mode wave at the expense of two Kelvin modes (Tomasson & Melville
1990). Thirdly, the basin-scale waves may exchange energy with a background mean
flow (e.g. Kuo & Polvani 1999; Riley & Lelong 2000). Theoretical studies on nonlinear
geostrophic adjustment in infinite (Reznik, Zeitlin & Ben Jelloul 2001; Zeitlin,
Reznik & Ben Jelloul 2003) and semi-infinite (Reznik & Grimshaw 2002) domains
have demonstrated that there is no interaction between the slow (mean flow) and fast
(wave) components of the response; however, in the current study the fast (basin-
scale wave) response remains trapped within the bounded domain so that an exchange
of energy between the basin-scale waves and a mean flow cannot be discounted.

Friction associated with the bottom and the sidewall boundaries of the circular
domain influences the temporal evolution of baroclinic basin-scale waves by causing
a reduction in the phase speed and a decrease in amplitude as the waves progress
(e.g. Martinsen & Weber 1981).

Topography may also be important in determining the basin-scale wave energy
pathways, with previous studies demonstrating that interactions between (longshore-
propagating) long waves and bathymetric ridges may lead to the transmission
of energy offshore, resulting in a significant reduction in the propagating wave
amplitude (Killworth 1989a, b; Chang 1991). Interactions between basin-scale waves
and abrupt changes in shoreline topography have resulted in flow separation and the
generation of cyclonic and anticyclonic eddies at the expense of the basin-scale waves
(Ivey & Maxworthy 1992). Field studies in large stratified lakes have postulated that
wave/topography interactions may result in generation of meso-scale eddies (Ralph
2003) or in the steepening of the basin-scale wave front leading to the generation of
high-frequency waves (e.g. Saggio & Imberger 1998; Boegman et al. 2003).

In the current study, we use a laboratory experiment to investigate the importance
of nonlinear, frictional and topographic effects on the temporal evolution of baroclinic
basin-scale waves in a rotating circular basin. In doing so, the dominant mechanisms
by which baroclinic basin-scale wave energy may be transferred (owing to nonlinear
or topographic interactions) or removed (owing to friction) are identified.

Experimentally, this is achieved by performing a baroclinic geostrophic adjustment
within a circular basin (see figure 1) that generates a geostrophic mean flow as well as
baroclinic basin-scale waves (Wake et al. 2004b). Using the experimental configuration
presented in figure 1, Wake et al. (2004b) identified two dimensionless parameters that
may be important in characterizing the temporal evolution of the baroclinic basin-
scale waves. The first parameter provides a measure of the initial forcing given by

ε =
�H

H1

(1.1)
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Figure 1. A side view of the initial condition for a baroclinic geostrophic adjustment in a
circular basin of radius R0. The step height discontinuity �H across the tank diameter ensures
that the upper (H1) and lower (H2) layer depths are equally displaced from the undisturbed
position of the density interface.

where �H is the initial step discontinuity across the basin diameter and H1 is the
undisturbed upper-layer depth (figure 1). The studies of Wake et al. (2004b) and Wake
et al. (2004a) focused on the geostrophic component of the response, demonstrating
that for a strong initial forcing (large ε) nonlinear effects result in a departure
from geostrophic equilibrium after τ > 2ε−1 (τ is time scaled by the inertial period
TI = 2π/f ) while for a weak initial forcing (small ε), nonlinear effects are precluded
by the influence of friction due to Ekman damping in the lower layer of the circular
basin (see figure 1).

The second parameter is the Burger number, which provides a measure of the
relative importance of stratification versus rotation, given by

S =
R

R0

, (1.2)

where R0 is the radius of the basin, R is the baroclinic Rossby radius of deformation
given by R = c0/f , c0 = (g′H1H2/(H1 + H2))

1/2 is the linear baroclinic phase speed
and f is the inertial frequency. The partitioning of energy between the geostrophic
and periodic components (Stocker & Imberger 2003; Wake et al. 2004b), as well as
the ratio of kinetic to potential energy contained in the baroclinic basin-scale waves
(Antenucci & Imberger 2001), is dependent upon S.

Initially, experiments are performed in a circular basin with a flat bottom and
vertical sidewalls in order to evaluate the influence of friction on the baroclinic
basin-scale waves as well as the potential nonlinear processes that may occur during
the propagation of the waves (figure 2a). Selected experiments are then repeated in
the presence of simple topographic features, a radially protruding cape (figure2b(i))
and a bathymetric ridge (figure 2b(ii)). The bathymetric ridge introduces a third
dimensionless parameter given by

γ =
H2

Hb

, (1.3)

where H2 is the undisturbed lower-layer depth (figure 1) and Hb is the height of the
bathymetric ridge.
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Figure 2. (a) Plan view of the experimental facility showing the azimuthal configuration of
the ultrasonic probes. The probes are positioned along a radius R∗ =41.5 cm from the tank
centre and are labelled from the semi-cylindrical insert in a cyclonic direction with positions
1–6 being 5, 30, 56, 69, 99 and 125 cm along the circumference of the semi-circle πR∗. The
location and shape of the topographic feature is indicated by the region enclosed by the
dashed lines. (b) Side view of the topographic features illustrating the azimuthal and vertical
dimensions of (i) the cape and (ii) the bathymetric ridge. (c) Side view of the experimental
facility showing the position of the two conductivity–temperature (CT) probes, the overhead
digital video camera and the radial configuration of the ultrasonic probes. The distances from
the sidewall to positions 1–6 are 3, 13, 20, 27, 38 and 45 cm, respectively. The two-dimensional
micro acoustic Doppler velocimeter (not shown) is placed adjacent to positions 1, 3 and 5
(radial configuration) in subsequent repetitions of a given experimental run.

The remainder of the paper is arranged as follows. Section 2 introduces the
experimental facility. The generation and classification of baroclinic basin-scale waves
is presented in § 3. In § 4, the temporal evolution of baroclinic basin-scale waves in
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the absence of topography is considered and the dissipation rates for the dominant
modes of the response are determined. The influence of topography on the temporal
evolution is investigated in § 5. Section 6 discusses the findings of the laboratory study
and the results of this work are considered in terms of their implications for the
baroclinic basin-scale wave energy pathways in lakes influenced by the rotation of
the Earth.

2. Experimental facility
A detailed description of the experimental facility and procedure can be found in

Wake et al. (2004b). For completeness, a brief outline is presented here. The model
configuration and experimental set-up are detailed in figures 1 and 2. The experiments
were conducted in a 95 cm diameter cylindrical Perspex tank of depth 50 cm. The tank
was mounted on a rotating turntable that revolved counterclockwise at a constant
rate Ω = f/2. The tank could be divided into two regions of equal volume by a
removable semi-cylindrical Perspex insert (open at the top and bottom) that could
be raised or lowered by means of a pulley system attached to the rotating table-top
frame.

In a typical experiment, the tank containing a fresh upper layer and a saline lower
layer was allowed to spin up into solid-body rotation. The semi-cylindrical insert was
then carefully lowered into the tank, below the density interface, effectively partitioning
the cylindrical tank into two regions: inside the semi-cylindrical insert (inner region)
and outside the semi-cylindrical insert (outer region). The initial potential energy
gradient and potential vorticity contrast between inner and outer regions was created
by pumping fluid from the upper layer in the outer region into the upper layer of the
inner region which, in turn, drove a return flow of lower-layer fluid underneath the
insert. Density profiles were measured in both the inner and outer regions, in order
to determine the introduced step height discontinuity, by traversing two conductivity-
temperature (CT) probes over the total fluid depth once the two-layer fluid had
returned to its quiescent state.

An experiment was initiated by swiftly removing the semi-cylindrical insert, using
the pulley system, while at the same time ensuring that the rotation rate remained
constant. The vertical interface displacements created by the release were sampled at
5 Hz from six ultrasonic probes. Experiments performed without topographic features
were repeated with the probes configured azimuthally (azimuthal configuration)
(figure 2a) and radially (radial configuration) (figure 2c) in order to obtain point
measurements of the spatial structure and direction of propagation of the excited
basin-scale waves. Time series of the radial and azimuthal velocities at mid-depth
in the upper layer were collected at 10 Hz using a two-dimensional micro acoustic
Doppler velocimeter (ADV). For each experiment in which the probes were in the
radial configuration, the sample volume of the micro ADV was positioned adjacent
to probes in positions 1, 3 and 5 in subsequent runs (figure 2c).

For the experimental runs that included one of the topographic features, the probes
were in the radial configuration and the feature was placed in the tank prior to the
addition of the fluid layers. The location of the topographic feature is illustrated in
figure 2(a). The cape and the bathymetric ridge were designed so that their horizontal
dimensions were identical (see figure 2a, b). Visualization experiments were performed
for runs that included topography with dye being injected near the feature in the upper
layer (cape) or lower layer (ridge) and an overhead digital video camera mounted on
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Run �H H1 H2 g′ f H1/H2 S ε Topography γ

1 2 10 10 18.8 0.19 1 1 0.2 − −
2 4 10 10 18.8 0.19 1 1 0.4 − −
3 8 10 10 18.8 0.19 1 1 0.8 − −
4 2 10 10 17.1 0.25 1 0.75 0.2 − −
5 4 10 10 17.1 0.25 1 0.75 0.4 − −
6 8 10 10 17.1 0.25 1 0.75 0.8 − −
7 2 10 10 12.1 0.32 1 0.5 0.2 − −
8 4 10 10 12.1 0.32 1 0.5 0.4 − −
9 8 10 10 12.1 0.32 1 0.5 0.8 − −

10 1 10 10 6.3 0.44 1 0.25 0.1 − −
11 2 10 10 6.3 0.44 1 0.25 0.2 − −
12 4 10 10 6.3 0.44 1 0.25 0.4 − −
13 8 10 10 6.3 0.44 1 0.25 0.8 − −
14 3 7.5 12.5 12.1 0.32 3/5 0.5 0.4 − −
15 2 5 15 12.1 0.32 1/3 0.5 0.4 − −
16 4 10 10 18.8 0.19 1 1 0.4 Cape −
17 4 10 10 12.1 0.32 1 0.5 0.4 Cape −
18 4 10 10 6.3 0.44 1 0.25 0.4 Cape −
19 4 10 10 18.8 0.19 1 1 0.4 Ridge 2.2
20 3 12.5 7.5 18.8 0.19 5/3 1 0.4 Ridge 1.7
21 2 15 5 18.8 0.19 3 1 0.4 Ridge 1.1
22 4 10 10 12.1 0.32 1 0.5 0.4 Ridge 2.2
23 3 12.5 7.5 12.1 0.32 5/3 0.5 0.4 Ridge 1.7
24 2 15 5 12.1 0.32 3 0.5 0.4 Ridge 1.1
25 4 10 10 6.3 0.44 1 0.25 0.4 Ridge 2.2
26 3 12.5 7.5 6.3 0.44 5/3 0.25 0.4 Ridge 1.7
27 2 15 5 6.3 0.44 3 0.25 0.4 Ridge 1.1

Table 1. The experimental programme: all data in c.g.s. units.

the rotating turntable (figure 2c) recorded the dye movement following the initiation
of an experiment.

The interface displacement η∗ initially had a step height discontinuity across the
tank diameter of magnitude �H (figure 1). The upper and lower undisturbed layer
depths were H1 and H2, respectively. The reduced gravity g′ was varied between 6.3
and 18.8 cm s−2 where g′ = g�ρ/ρ2 and �ρ = ρ2 −ρ1 is the density difference between
the upper and lower layers and g is the acceleration due to gravity. The radius of the
semi-cylindrical forcing mechanism rf was equal to the dimensional radius R0 of the
cylindrical tank, as shown in figure 1, which was scaled with the baroclinic Rossby
radius of deformation given by R = c0/f to give the Burger number S = R/R0. The
inertial frequency f range was 0.19–0.44 s−1 so that S varied between 1 and 0.25.
The initial step discontinuity �H , was scaled by the undisturbed upper-layer depth
H1 so that ε = �H/H1 while the interface displacement η∗ was non-dimensionalized
by �H . The initial forcing amplitude ε was varied between 0.1 and 0.8, while the
ratio of the layer depths H1/H2 was varied between 1/3 and 3. The height of the
bathymetric ridge Hb was scaled with the lower-layer depth H2 and was varied
between 1.1 and 2.2. Time t was scaled using the inertial period TI = 2π/f so that
τ = t/TI was dimensionless time, while the velocity was scaled using εf R so that
the dimensionless azimuthal velocity in the upper layer was ūa . A summary of the
experimental programme is given in table 1.
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Figure 3. (a) Time series of the interface displacement η collected at 5 Hz from positions 1,
3 and 5 (radial configuration) for run 8 (S = 0.5, ε = 0.4). (b) Power spectra of the interface
displacements shown in (a). The wave frequency ω is scaled by f , with the dashed vertical line
identifying the inertial frequency f while the solid vertical lines identify the significant peaks.
Spectra have been smoothed in the frequency domain to improve confidence, with the 95%
confidence level shown by the dotted lines.

3. Baroclinic basin-scale wave classification in a rotating circular basin
Initiating an experiment produces a basin-scale geostrophic flow as well as baroclinic

waves. A detailed discussion of the adjustment process can be found in Wake et al.
(2004b). Interface displacement and azimuthal velocity time series measured by the
instrumentation in a radial configuration are presented in figures 3(a) and 4(a) for
a typical run (run 8 (S = 0.5, ε = 0.4)) of the experimental programme. As seen
in figures 3(a) and 4(a), the response to the initial forcing is complex, consisting of
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Figure 4. (a) Time series of the azimuthal velocity ūa collected at 10 Hz from positions 1, 3
and 5 (radial configuration) for run 8 (S = 0.5, ε = 0.4). (b) Power spectra of the azimuthal
velocity shown in (a). Spectra are smoothed in a similar manner to figure 3 (b).

multiple frequencies which decay in time with no wave motion evident after 40 TI .
Comparison of time series between positions 1 and 5 clearly shows that the interface
displacement amplitude decays offshore. Note also that the phase between the interface
displacement and velocity changes with time.

Power spectra of the interface displacement and velocity time series in figures 3(a)
and 4(a) are shown in figures 3(b) and 4(b), respectively. Wave identification is on
the basis that a wave of significance will exhibit spectral peaks in both displacement
(figure 3b) and velocity (figure 4b) at the same frequency. Using this criterion, three
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Observed Predicted Mode (radial, azimuthal) Direction of propagation

0.55 0.65 (1,1) Cyclonic
1.40 1.51 (1,1) Anticyclonic

Table 2. Observed versus predicted wave frequencies (|ω/f |) from (3.1) (Csanady 1967) for
the dominant waves excited in run 8 (S = 0.5, ε = 0.4).

S Mode Frequency Type

1 −(1,1) Super-inertial Poincaré
+(1,1) Super-inertial Poincaré

0.75 −(1,1) Sub-inertial Kelvin
+(1,1) Super-inertial Poincaré

0.5 −(1,1) Sub-inertial Kelvin
−(2, 1) Super-inertial Kelvin
+(1,1) Super-inertial Poincaré

0.25 −(1,1) Sub-inertial Kelvin
−(2, 1) Sub-inertial Kelvin
−(3, 1) Sub-inertial Kelvin
+(1,1) Super-inertial Poincaré

Table 3. The baroclinic basin-scale waves observed in the laboratory experiments in the
absence of topography. The excited modes are independent of the initial forcing, ε.

waves of significance can be identified for this run: a sub-inertial and two super-
inertial waves.

The two dominant basin-scale waves illustrated in figures 3(b) and 4(b) have
dimensionless frequencies ω/f of approximately 0.55 and 1.40, respectively. Csanady
(1967) calculated the natural frequencies using the dispersion relation for super-inertial
waves

1

S

√
(ω/f )2 − 1Jn−1

(
1

S

√
(ω/f )2 − 1

)
+ n

(
1

ω/f
− 1

)
Jn

(
1

S

√
(ω/f )2 − 1

)
= 0,

(3.1)

where Jn is the ordinary Bessel function of order n, where n is the azimuthal mode
number. Equation (3.1) is an eigenvalue problem for which solutions of increasing
ω/f correspond to higher radial modes for fixed n (e.g. Antenucci & Imberger 2001).
A frequency equation of identical form to (3.1) is obtained for sub-inertial waves using
the identity Jn(ix) = inIn(x) after noting that the coefficient of the first term and the
argument of the Bessel function in (3.1) is imaginary for a sub-inertial wave (Csanady
1967). Comparing the observed and predicted frequencies (see table 2) suggests that
the sub-inertial wave may be classified as a cyclonically propagating azimuthal mode
one, radial mode one (−(1,1)) wave, commonly referred to in the literature as a
Kelvin wave (e.g. Csanady 1967; Antenucci & Imberger 2001). The super-inertial
wave may be classified as either an anticyclonically propagating, azimuthal mode one,
radial mode one (+(1,1)) wave or as a Poincaré wave (e.g. Csanady 1967; Antenucci &
Imberger 2001). Rather than referring to the periodic response as consisting of Kelvin
and Poincaré waves, which is common practice in the literature, we adopt the formal
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Figure 5. For caption see facing page.
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classification because it provides an unambiguous description of the spatial structure
and the direction of propagation of the wave.

Csanady (1967) used linear inviscid theory to determine the modal structure of the
natural baroclinic basin-scale waves in a rotating circular basin with the interface
displacement given as

η(r, θ) = AϕG(r)cos(nθ), (3.2)

where

G(r) =

{
Jn(r/R∗), |ω/f | > 1,
In(r/R∗), |ω/f | < 1,

(3.3)

and

R∗ =
c0√

|ω2 − f 2|
, (3.4)

while the azimuthal ūa velocity in the upper layer is

ūa(r, θ) = A
−χc0

ω2 − f 2

(
f

dG

dr
+

ωn

r
G

)
cos(nθ), (3.5)

where ϕ and χ are coefficients associated with the transform from modal variables into
layer variables and A is an unknown scaling parameter that provides the wave
amplitude.

Bandpass filtering the interface displacement and azimuthal velocity time series at
each measurement location (see figure 2) provides point measurements of η(r, θ) and
ūa(r, θ) for a given periodic mode as a function of time. Assuming that the modal
structure of the wave is described by linear theory, the unknown scaling parameter A

is calculated for a given instant in time as the mean of the estimates of this parameter
determined at each measurement location using (3.2)–(3.5).

Consider the observed and fitted analytical predictions of the sub-inertial wave
radial profile (figure 5a). It is evident that the observed interface displacement and
velocity profiles are described well by the radial mode one profile. Similarly, for the
super-inertial wave, the observed profiles agree strongly with the radial mode one pro-
file (figure 5b). Now consider the observed and fitted analytical azimuthal profile for
the sub-inertial (figure 5c) and super-inertial wave (figure 5d) over one wave period.
In both instances, the observed azimuthal profiles are described well by the azimuthal
mode one profile. Furthermore, it is clear from figures 5(c) and 5(d) that the direction
of wave propagation observed in run 8 agrees with the prediction obtained from the
frequency comparison with the sub-inertial wave propagating cyclonically around the
basin while the super-inertial wave propagates anticyclonically.

Using this approach, all the waves identified from the experimental program are
classified in table 3. Note that the excited modes are independent of ε and that wave
classification using Kelvin/Poincaré nomenclature is also provided. The dominant

Figure 5. The measured and fitted analytical profiles for run 8 (S = 0.5, ε = 0.4). Radial
profiles of (i) the interface displacement η and (ii) the azimuthal velocity ua after 7 TI for (a) the
sub-inertial wave and (b) the super-inertial wave. Azimuthal profiles of interface displacement
η over one wave period after 7 TI for (c) the sub-inertial wave and (d) the super-inertial wave.
Sequential panels illustrate the change in the azimuthal interface displacement over 1/4 of the
wave period while the arrows in (c) (i) and (d) (i) indicate the direction of wave propagation.
The solid line is the fitted analytical profile while the asterisks (∗), diamonds (�) and triangles
(�) represent the measured values. Error estimates are of the order of instrument sensitivity
(± 0.02 for the ultrasonic probes and ± 0.04 for the micro ADV).
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waves over the experimental regime are the −(1,1) and +(1,1) waves with the higher
modes constituting a minor fraction of the periodic response (< 10% of the total wave
energy calculated using the method presented in § 4), a result previously determined
analytically (Stocker & Imberger 2003). The remainder of this study focuses on the
temporal evolution of the −(1,1) and +(1,1) waves.

4. The temporal evolution of baroclinic basin-scale waves in a rotating
circular basin

The temporal evolution of the dominant basin-scale waves is investigated by
comparing the filtered point measurements with the fitted analytical predictions of the
wave profile every time a wave crest or trough is observed in the radially configured
time series measurements. Because of the end effects associated with the band-
pass filtering technique, 3 TI (approximately one wave period of the gravest mode
excited when S = 0.25) is adopted as the earliest time after which the filtered point
measurements of individual waves from different experimental runs may be compared.

The temporal evolution of the radial and azimuthal profile for the −(1,1) wave and
the +(1,1) wave over the first 15 TI for run 8 is illustrated in figures 6 and 7 and
clearly shows that the dominant waves are described well by linear theory although
the wave amplitude decreases during this period.

Figure 8 shows the power spectra of the interface displacement and azimuthal
velocity measurements taken from position 3 (radial configuration) (see figure 2c)
for a range of the initial forcing ε. The amplitude of the basin-scale wave spectral
peaks remain constant and the high-frequency end of the spectra remains unchanged,
suggesting that varying ε does not change the composition of the periodic response.
Using the bandpass filtering technique as before, the temporal evolution of the −(1,1)
and +(1,1) waves in runs 7, 8 and 9 is determined and in all cases is described well
by linear theory with the wave amplitude reducing in time.

Comparison between experimental runs for which ε remains constant but the
influence of rotation S is varied, yields a similar result with the measured radial and
azimuthal structure of the −(1,1) and +(1,1) basin-scale waves retaining a linear
form until the waves are dissipated. Antenucci & Imberger (2001) derived the ratio
of kinetic (KE ) to potential (PE ) energy as a function of S for basin-scale waves
using linear theory. Given that the −(1,1) and +(1,1) waves exhibit a linear form
until dissipated, the PE/KE ratios may now be used in conjunction with the fitted
linear amplitudes to calculate the temporal evolution of the KE, PE and total energy
of these waves. In figure 9, the energy in the −(1,1) wave, the +(1,1) wave, and the
total wave energy (TWE = the sum of these two components) are plotted versus the
number of inertial periods. The influence of S and ε on the partitioning of energy
between the −(1,1) wave and the +(1,1) wave as time proceeds, as well as the total
wave dissipation rate, is shown. All plots have been normalized by the total wave
energy after 3 TI (TWE 0). Stocker & Imberger (2003) noted that the initial partitioning
of energy between the two gravest modes is a function of S. For the limited range of
S considered here, the −(1,1) wave accounts for 60–65% of the total wave energy and
the remaining 35–40% resides in the +(1,1) wave with the initial energy partitioning
between the −(1,1) wave and the +(1,1) wave being maintained at all times. This
partitioning of energy does not exhibit a noticeable dependence on ε, suggesting that
the decay of wave energy is not associated with the nonlinear transfer of energy
between the modes or to higher-frequency waves. Moreover, the steady decay of the
basin-scale waves suggests that, despite the fact that the geostrophic and periodic
components of the response remain trapped within the bounded domain and have
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Figure 6. Comparison between the fitted analytical profiles and the measured (a) interface
displacement η (radial configuration), (b) azimuthal velocity ua (radial configuration) and
(c) interface displacement η (azimuthal configuration) of the −(1,1) sub-inertial wave for run 8
(S = 0.5, ε = 0.4) after approximately (i) 3 TI , (ii) 5 TI , (iii) 7 TI , (iv) 9 TI , (v) 11 TI and (vi) 13 TI .
The solid lines are the fitted analytical solution while the asterisks, triangles and diamonds
are the measured interface displacements (radial and azimuthal configuration) and the
azimuthal velocities, respectively. Error estimates are identical to those calculated in figure 5.

comparable velocities (see figure 4a), there is little evidence for nonlinear wave–mean
flow interaction. This observation provides experimental support for the theoretical
studies of Reznik & Grimshaw (2002) and Zeitlin et al. (2003), which argued that
the fast (wave) and slow (geostrophic flow) components of the response following a
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Figure 7. Comparison between the fitted analytical profiles and the measured (a) interface
displacement η (radial configuration), (b) azimuthal velocity ua (radial configuration) and
(c) interface displacement η (azimuthal configuration) of the +(1,1) super-inertial wave for run
8 (S = 0.5, ε = 0.4) after approximately (i) 3 TI , (ii) 5 TI , (iii) 7 TI , (iv) 9 TI , (v) 11 TI and (vi) 13
TI . The solid lines are the fitted analytical solution while the asterisks, triangles and diamonds
are the measured interface displacements (radial and azimuthal configuration) and the
azimuthal velocities, respectively. Error estimates are identical to those calculated in figure 5.

geostrophic adjustment will not undergo a wave–mean flow interaction. The decay
of wave energy is exponential in character and is independent of ε, but exhibits a
dependence on S. Functions of the form e−Kτ (τ is time scaled by TI ) are fitted,
using the least-squares method, to the total wave energy presented in panels (i)–(iii)
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Figure 8. Power spectra of the (a) interface displacement η and (b) azimuthal velocity ua meas-
ured from position 3 (radial configuration) for run 7 (S = 0.5, ε = 0.2), run 8 (S = 0.5, ε = 0.4)
and run 9 (S = 0.5, ε = 0.8). Spectra are smoothed in a similar manner to figure 3 (b).

of figure 9(a) to provide an estimate of the dimensionless decay coefficient K for the
dominant waves as a function of S (see table 4).

5. Influence of topography on the temporal evolution
5.1. Cape

The influence of the cape on the temporal evolution of the baroclinic basin-scale waves
is shown in figure 10. The power spectra of the interface displacement measured from
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Figure 9. �, The total wave energy TWE ; ∗, energy in the −(1,1) wave; �, energy in the
+(1,1) wave; and - - -, the energy ratio +(1,1)/−(1,1) versus inertial periods (a) for a range of
S (i) run 2 (S = 1, ε = 0.4), (ii) run 5 (S = 0.75, ε = 0.4) and (iii) run 8 (S = 0.5, ε = 0.4)
and (b) for a range of ε (i) run 7 (S = 0.5, ε = 0.2), (ii) run 8 (S = 0.5, ε = 0.4) and (iii) run
9 (S = 0.5, ε = 0.8). Wave energy is normalized by the total wave energy after approximately
3 TI (TWE 0).
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S K

0.5 0.07
0.75 0.09
1 0.1

Table 4. Decay coefficient K as a function of S, determined from the decay of total wave
energy (TWE) from the dominant basin-scale waves illustrated in panels (i)–(iii) of figure 9(a).
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Figure 10. (a) Time series of the interface displacement η from position 1 (radial
configuration) (i) with no topography (run 8 (S = 0.5, ε = 0.4)) and (ii) with the cape
(run 17 (S = 0.5, ε = 0.4)). (b) Power spectra of the interface displacements shown in (a).
Spectra are smoothed in a similar manner to figure 3 (b).

position 1 (radial configuration) indicate that in the presence of the cape, the spectral
peak associated with the +(1,1) wave is not observed, suggesting that it is not excited
as part of the periodic response. Such a result has been previously reported by
Csanady (1973) who noted that this mode is not observed if the symmetry of the
circular basin is sufficiently altered by topography.
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The −(1,1) wave is observed, but with a reduced amplitude. The similarity between
the higher-frequency end of the power spectra (frequencies greater than the frequency
of the +(1,1) wave) suggests that the reduced amplitude of the −(1,1) wave, owing
to the wave/topography interaction, is not a result of the transfer of energy from
the basin-scale mode to higher-frequency waves. As noted by an anonymous referee,
the low-frequency end of the power spectra in the presence of the cape contains
more energy, suggesting that the reduced amplitude of the −(1,1) wave, owing to
the wave/topography interaction, results in a transfer of energy to lower-frequency
motions. Figure 11 shows the results of a dye study conducted in the upper layer with
the cape in place. Figure 11(a) indicates the position of the dye in the upper layer
prior to the removal of the semi-cylindrical insert while figures 11(b)–11(f ) present
the observed dye dispersion during the first three −(1,1) wave periods.

After an experiment is initiated, the leading −(1,1) wave trough encounters the
cape with the dramatic variation in longshore topography resulting in flow separation
and the generation of weak anticyclonic eddies at points A1 and A2, indicated in
figure 11(b). As the direction of the flow reverses with the arrival of the −(1,1) wave
crest at the cape, the weakly formed anticyclonic eddies are sheared apart and the
reversal in flow direction results in flow separation at points C1 and C2 (figure 11c)
which, in turn, generates cyclonic eddies that move into the interior of the tank.
Eddy generation by this mechanism, at the expense of the −(1,1) wave, is observed
over the study period (see figures 11c–11f ) and is also occurring concurrently in the
lower layer (not shown). The preferential formation of cyclonic eddies owing to flow
separation in a wave-forced flow has previously been reported by Ivey & Maxworthy
(1992). The observed lengthscale of the cyclonic eddies in both studies (the present
study and that of Ivey & Maxworthy 1992) is independent of S, suggesting that the
eddy injection scale is dependent upon the geometry of the cape.

5.2. Bathymetric ridge

Figure 12(a) compares measured interface displacements from position 1 (radial
configuration) for γ , defined in (1.3), between 1.1 and 2.2. The decay of the periodic
response is clearly a function of γ , with the rate of energy loss from the waves
increasing as γ decreases. Corresponding power spectra in figure 12(b) indicate that
the amplitude of the spectral peak due to the +(1,1) wave remains unchanged for
γ = 2.2 and γ = 1.7, but is not detected when γ = 1.1. The suggestion is that when
γ ≈ 1, the ridge acts in an analogous fashion to the cape, sufficiently altering the
symmetry of the lower layer of the circular basin so that the gravest anticyclonic mode
is not excited (Csanady 1973). The amplitude of the spectral peak due to the −(1,1)
wave is a function of γ , with the amplitude reducing as γ → 1. The similarity between
the higher frequency end of the power spectra plotted in figure 12(b) suggests that the
observed increase in the decay rate of the −(1,1) wave due to the wave/topography
interaction is not associated with the transfer of basin-scale wave energy to higher
periodic modes.

Consider the dye study shown in figure 13 which demonstrates the dye dispersion
in the lower layer owing to the presence of the bathymetric ridge in run 24 (γ = 1.1).
The longshore anticyclonic flow along the sidewall boundary established in the wake
of the leading trough of the −(1, 1) wave in the absence of topography (Wake et al.
2004b) is not apparent, with the dye movement being directed offshore during the
first −(1,1) wave period. It is during this period that a rapid reduction in amplitude of
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Figure 11. Plan view images taken from the overhead digital video camera of dye streak lines
in the upper layer owing to the wave/topography interaction associated with the cape in run
17 (S = 0.5, ε = 0.4). (a) The position of the dye prior to initiation of an experiment. (b) The
dye dispersion after 0.5, 1, 2, 2.5 and 3 periods of the −(1,1) wave, respectively. Rotation is in
a counterclockwise direction.
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Figure 12. (a) Time series of the interface displacement η from position 1 (radial configu-
ration) for (i) run 8 (no topography, S = 0.5, ε =0.4), (ii) run 22 (γ = 2.2, S = 0.5, ε =0.4),
(iii) run 23 (γ = 1.7, S = 0.5, ε = 0.4) and (iv) run 24 (γ =1.1, S = 0.5, ε = 0.4). (b) Power
spectra of the interface displacements shown in (a). Spectra are smoothed in a similar manner
to figure 3 (b).

the −(1,1) wave is observed (see figure 12a(iv)), suggesting that the wave/topography
interaction generates an offshore flow at the expense of the −(1,1) wave.

For longer time, the offshore flow moves towards the interior of the basin where
it interacts with the geostrophic flow established across the basin diameter by the
initiation of the experiment (figure 13d–f ) (Wake et al. 2004b).

A similar offshore flow is observed during the first −(1,1) wave period for γ = 1.7
and γ = 2.2. The wave/topography interaction is not as pronounced in such cases
(see figure 12), so the longer time behaviour is complicated by successive wave crests
and troughs of the −(1,1) wave interacting with the bathymetric ridge.
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Figure 13. Plan view images taken from the overhead digital video camera of dye streak lines
in the lower layer owing to the wave/topography interaction associated with the bathymetric
ridge in run 24 (γ = 1.1, S = 0.5, ε = 0.4). (a) The position of the dye prior to initiation of
an experiment. (b) The dye dispersion after 0.5, 1, 2, 2.5 and 3 periods of the −(1,1) wave,
respectively. Rotation is in a counterclockwise direction.

5.3. Baroclinic basin-scale wave decay in the presence of topography

The introduction of the cape or the bathymetric ridge into the circular basin results
in interactions between the −(1,1) wave and the topography that leads to the rapid
transfer of energy from the basin-scale wave to an eddy field (cape) or an offshore
flow (bathymetric ridge). The techniques developed earlier may be used to compare
the rate of energy loss from the −(1,1) wave, owing to the topography, with the decay
rate in the absence of topography.

From figure 14, it is estimated that in the absence of topography, the −(1,1) wave
loses approximately 15% of its energy over the first wave period, for example. This
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energy loss increases to about 55% with the introduction of the cape, which implies
that an additional 40% of the initial energy in the −(1,1) wave is transferred during
the first wave period to the eddy field generated by the wave/topography interaction.
Similarly for the bathymetric ridge, the energy transferred during the first wave period
is approximately 60% (γ =2.2) and then increases with increasing height of the ridge
to 75% (γ =1.7) and 80% (γ = 1.1).

6. Discussion and conclusions
In the absence of topography, the basin-scale wave amplitude decays in time. It

has been demonstrated that the nonlinear transfer of basin-scale wave energy cannot
account for this observation, suggesting that wave decay is due to the influence of
boundary friction. In the experiment, friction acts in a complicated fashion, with
contributions from unsteady Ekman layers which form on the density interface and
the tank bottom and unsteady Stewartson layers which form on the sidewall boundary
of the tank in each layer after approximately one TI (e.g. Pedlosky 1987). Previous
laboratory studies on rotating flows (e.g. Condie & Ivey 1988; Jacobs & Davies 1999)
have captured the influence of complex frictional mechanisms by using simple models
that consider the force balance at a point in the flow, subject to steady boundary
layers estimated using δ � (ν/f )1/2. We adopt a similar approach, noting that the
frictional terms can be parameterized as

ν∇2u � ν
u

δ2
� f u, (6.1)

after assuming a steady boundary-layer thickness.
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S τK τD

0.5 14 14
0.75 11 12
1 10 8

Table 5. Comparison between the e-folding timescale (in inertial periods) for dissipation
determined from experiments for the dominant waves τK (see table 4) and the Ekman damping
timescale τD (6.2).

The influence of friction can thus be included in the linearized rotating shallow-
water equations using a Rayleigh friction term (Ku) where K is an effective decay
coefficient. Stocker, Imberger & D’Alpaos (2000) demonstrated that in a rotating
circular basin, the spatial structure of interface displacement and azimuthal velocity
determined from such a set of governing equations is the same as the linear inviscid
solution (3.2 and 3.5), but the wave amplitude decays exponentially in time according
to e−Kτ . Experimental observations presented in figure 9 are consistent with this simple
model of frictional damping, with estimates of the dimensionless decay coefficient K

for the dominant waves over a range of S being provided in table 4.
The characteristic e-folding time scale due to dissipation by Ekman damping in the

lower layer (e.g. Gill 1982) after scaling with TI , is given by

τD =
H2

π

(
f

2ν

)1/2

, (6.2)

and can be estimated for the experiments using the parameters given in table 1.
The predictions from 6.2 and those obtained from the experimentally observed decay
coefficients are shown in table 5, and the good agreement implies that, despite the
complicated frictional influence in operation, wave dissipation can be modelled using
steady Ekman dynamics associated with the tank bottom in the lower layer.

The introduction of topographic features significantly changes the composition of
the periodic response (the +(1,1) wave was no longer observed) as well as decay rate
of the −(1,1) wave owing to wave/topography interactions. For the −(1,1) wave to
be significantly affected by the cape, the variation in the offshore length scale of the
topography LR , must be large in comparison to the characteristic radial length scale
R of the −(1,1) wave. This occurs when

SR =
R

LR

< O(1). (6.3)

Now consider the interaction between the −(1,1) wave and the bathymetric ridge.
Note that the offshore flow generated by this interaction is evident after half a
wave period (see figure 13b) which suggests that its generation is associated with the
propagation of the leading −(1,1) wave trough over the ridge. The bathymetric ridge
partitions the lower layer into three regions: region 1 is downstream of the ridge,
region 2 is above the ridge, and region 3 is upstream of the ridge. Ignoring frictional
effects, then conserving potential vorticity before and after the wave of depression
has passed region 1, yields

ζ1 = −f η

H2

, (6.4)
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where ζ1 is the anticyclonic relative vorticity of a fluid column in region 1 induced by
the passage of the wave of depression. Similarly, for region 2

ζ2 = − f η

H2 − Hb

. (6.5)

Combining (6.4) and (6.5), and using γ = H2/Hb gives

ζ2 =
γ

γ − 1
ζ1. (6.6)

Defining ζbd = ζ2 − ζ1 and using (6.6) yields

ζbd =
1

γ − 1
ζ1, (6.7)

so that the relative vorticity introduced over the downstream face ζbd is anticyclonic.
Using a similar argument to the one given above,

ζbu = − 1

γ − 1
ζ1, (6.8)

so that the relative vorticity introduced over the upstream face of the bathymetric
ridge ζbu is cyclonic.

In the absence of the bathymetric ridge, the −(1,1) wave trough compresses fluid
columns in the lower layer, generating an anticyclonic boundary current in its wake
(Wake et al. 2004b). For the −(1,1) wave trough to interact with the ridge, the
time scale for fluid columns to acquire relative vorticity (TI � 1/f ), owing to
compression/stretching of fluid columns as they move over the topography, must
be less than the advection time scale over the ridge given by TAD = Lθ/ub, where Lθ

is the azimuthal length scale of the ridge and ub � εc0 is the characteristic velocity
of the anticyclonic boundary current (Wake et al. 2004b). This condition can be
expressed as

1

f
<

Lθ

εc0

, (6.9)

so that the −(1,1) wave will interact with the ridge when

εSθ < O(1), (6.10)

where Sθ = R/Lθ .
Having satisfied (6.10), fluid columns located in region 1 and along the downstream

face will be initially advected towards the ridge plateau and, as a consequence of (6.7),
will acquire anticyclonic relative vorticity. Concomitantly, fluid columns in region 2
and along the upstream face will be initially advected towards the base of the ridge
and, owing to (6.8), will acquire cyclonic relative vorticity. The interaction of these
regions of cyclonic and anticyclonic relative vorticity induces an offshore flow along
the bathymetric ridge, as observed in the laboratory experiments (see figure 13). From
(6.7) and (6.8), the strength of the offshore flow and, hence, the amount of energy
extracted from the −(1,1) wave during the first wave period, increases as γ decreases,
which is also consistent with the experimental results reported in figure 14.

The current study demonstrates that in the absence of topography, friction acts
in a complicated manner owing to the influence of rotation and is the dominant
process leading to energy loss from the baroclinic basin-scale waves. A related study
by Boegman, Ivey & Imberger (2005) considered the non-rotating analogue of the
laboratory experiment considered here and found that nonlinear steepening of the
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baroclinic basin-scale wave, owing to the initial forcing and ambient stratification,
resulted in the transfer of up to 20% of its energy to higher-frequency waves. The
conclusion is that rotation acts, via Ekman dynamics, to damp the wave motion
before significant nonlinear behaviour associated with the basin-scale wave can be
observed. In this way, field observations of high-frequency waves in small stratified
lakes (S � 1) (e.g. Farmer 1978; Lemmin 1987) may be generated by nonlinear
steepening of the basin-scale waves; however, it is unlikely that this mechanism
can account for high-frequency waves observed in large stratified lakes (S < 1) (e.g.
Saggio & Imberger 1998; Boegman et al. 2003).

The addition of the topographic configurations investigated in this study provides
a pathway by which energy can be rapidly removed from the basin-scale wave and
transferred to an offshore flow (bathymetric ridge) or an eddy-field (cape), resulting
in significant horizontal mixing between the nearshore and the interior of the basin
in a relatively short period. The interaction between the −(1,1) wave and the radially
protruding cape, provides an explanation for the field observations of Rueda et al.
(2003) in Lake Tahoe (USA) where it was noted that interaction between the −(1,1)
wave (referred to as the horizontal mode one Kelvin wave) and abrupt changes in
the shoreline topography resulted in the injecting of (eddy) kinetic energy into the
interior of the basin (see figure 13 in Rueda et al. 2003). In this way, wave/topography
interactions may play a significant role in establishing the meso-scale eddy field
reported by Ralph (2003) in Lake Superior (North America) and, as a consequence,
such interactions may be extremely important in determining the horizontal mixing of
chemical agents and biological matter within such large stratified lakes. We conclude
this study by noting that it is wave/topography interactions that govern the energy
pathways of baroclinic basin-scale waves in lakes influenced by the Earth’s rotation
and postulate that high-frequency waves observed in large stratified lakes are most
probably due to wave/topography interactions.
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